[2019年全国各地中考数学试题分类汇编(第三期),专题15,频数与频率(含解析)]
频数与频率 三.解答题 1.(2019•湖北省仙桃市•7分)为了解某地七年级学生身高情况,随机抽取部分学生,测得他们的身高(单位:cm),并绘制了如下两幅不完整的统计图,请结合图中提供的信息,解答下列问题. (1)填空:样本容量为 100 ,a= 30 ;
(2)把频数分布直方图补充完整;
(3)若从该地随机抽取1名学生,估计这名学生身高低于160cm的概率. 【分析】(1)用A组的频数除以它所占的百分比得到样本容量,然后计算B组所占的百分比得到a的值;
(2)利用B组的频数为30补全频数分布直方图;
(3)计算出样本中身高低于160cm的频率,然后利用样本估计总体和利用频率估计概率求解. 【解答】解:(1)15÷=100, 所以样本容量为100;
B组的人数为100﹣15﹣35﹣15﹣5=30, 所以a%=×100%=30%,则a=30;
故答案为100,30;
(2)补全频数分布直方图为:
(3)样本中身高低于160cm的人数为15+30=45, 样本中身高低于160cm的频率为=0.45, 所以估计从该地随机抽取1名学生,估计这名学生身高低于160cm的概率为0.45. 【点评】本题考查了利用频率估计概率:用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.也考查了统计中的有关概念. 2.(2019•湖北省咸宁市•8分)某校为了解七、八年级学生一分钟跳绳情况,从这两个年级随机抽取50名学生进行测试,并对测试成绩(一分钟跳绳次数)进行整理、描述和分析,下面给出了部分信息:
七、八年级学生一分钟跳绳成绩分析表 年级 平均数 中位数 众数 七 116 a 115 八 119 126 117 七年级学生一分钟跳绳成绩(数据分7组:60≤x<80,80≤x<100,…,180≤x<200)在 100≤x<120这一组的是:
100 101 102 103 105 106 108 109 109 110 110 111 112 113 115 115 115 116 117 119 根据以上信息,回答下列问题:
(1)表中a= 118 ;
(2)在这次测试中,七年级甲同学的成绩122次,八年级乙同学的成绩125次,他们的测试成绩,在各自年级所抽取的50名同学中,排名更靠前的是 甲 (填“甲”或“乙”),理由是 甲的成绩122超过中位数118,乙的成绩125低于其中位数126 . (3)该校七年级共有500名学生,估计一分钟跳绳不低于116次的有多少人? 【分析】(1)根据中位数,结合条形统计图及所给数据求解可得;
(2)将甲、乙成绩与对应的中位数对比,从俄日得出答案;
(3)利用样本估计总体思想求解可得. 【解答】解:(1)∵七年级50名学生成绩的中位数是第25.26个数据的平均数,而第25.26个数据分别是117.119, ∴中位数a==118, 故答案为:118;
(2)∴在各自年级所抽取的50名同学中,排名更靠前的是甲, 理由是甲的成绩122超过中位数118,乙的成绩125低于其中位数126, 故答案为:甲,甲的成绩122超过中位数118,乙的成绩125低于其中位数126. (3)估计一分钟跳绳不低于116次的有500×=270(人). 【点评】本题主要考查频数分布直方图、中位数及样本估计总体,解题的关键是根据直方图得出解题所需数据及中位数的定义和意义、样本估计总体思想的运用. 3.(2019湖南益阳10分)某校数学活动小组对经过某路段的小型汽车每车乘坐人数(含驾驶员)进行了随机调查,根据每车乘坐人数分为5类,每车乘坐1人、2人、3人、4人、5人分别记为A、B、C、D、E,由调查所得数据绘制了如图所示的不完整的统计图表. 类别 频率 A m B 0.35 C 0.20 D n E 0.05 (1)求本次调查的小型汽车数量及m,n的值;
(2)补全频数分布直方图;
(3)若某时段通过该路段的小型汽车数量为5000辆,请你估计其中每车只乘坐1人的小型汽车数量. 【分析】(1)由C类别数量及其对应的频率可得总数量,再由频率=频数÷总数量可得m、n的值;
(2)用总数量乘以B、D对应的频率求得其人数,从而补全图形;
(3)利用样本估计总体思想求解可得. 【解答】解:(1)本次调查的小型汽车数量为32÷0.2=160(辆), m=48÷160=0.3,n=1﹣(0.3+0.35+0.20+0.05)=0.1;
(2)B类小汽车的数量为160×0.35=56,D类小汽车的数量为0.1×160=16, 补全图形如下:
(3)估计其中每车只乘坐1人的小型汽车数量为5000×0.3=1500(辆). 【点评】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来;
从条形图可以很容易看出数据的大小,便于比较.也考查了用样本估计总体和频率分布表. 4. (2019•广东广州•10分)某中学抽取了40名学生参加“平均每周课外阅读时间”的调查,由调查结果绘制了如下不完整的频数分布表和扇形统计图. 频数分布表 组别 时间/小时 频数/人数 A组 0≤t<1 2 B组 1≤t<2 m C组 2≤t<3 10 D组 3≤t<4 12 E组 4≤t<5 7 F组 t≥5 4 请根据图表中的信息解答下列问题:
(1)求频数分布表中m的值;
(2)求B组,C组在扇形统计图中分别对应扇形的圆心角度数,并补全扇形统计图;
(3)已知F组的学生中,只有1名男生,其余都是女生,用列举法求以下事件的概率:从F组中随机选取2名学生,恰好都是女生. 【分析】(1)用抽取的40人减去其他5个组的人数即可得出m的值;
(2)分别用360°乘以B组,C组的人数所占的比例即可;
补全扇形统计图;
(3)画出树状图,即可得出结果. 【解答】解:(1)m=40﹣2﹣10﹣12﹣7﹣4=5;
(2)B组的圆心角=360°×=45°, C组的圆心角=360°或=90°. 补全扇形统计图如图1所示:
(3)画树状图如图2:
共有12个等可能的结果, 恰好都是女生的结果有6个, ∴恰好都是女生的概率为=. 【点评】此题主要考查了列表法与树状图法,以及扇形统计图、频数分布表的应用,要熟练掌握. 5. (2019•海南省•8分)为宣传6月6日世界海洋日,某校九年级举行了主题为“珍惜海洋资源,保护海洋生物多样性”的知识竞赛活动.为了解全年级500名学生此次竞赛成绩(百分制)的情况,随机抽取了部分参赛学生的成绩,整理并绘制出如下不完整的统计表(表1)和统计图(如图).请根据图表信息解答以下问题:
(1)本次调查一共随机抽取了 50 个参赛学生的成绩;
(2)表1中a= 8 ;
(3)所抽取的参赛学生的成绩的中位数落在的“组别”是 C ;
(4)请你估计,该校九年级竞赛成绩达到80分以上(含80分)的学生约有 320 人. 表1 知识竞赛成绩分组统计表 组别 分数/分 频数 A 60≤x<70 a B 70≤x<80 10 C 80≤x<90 14 D 90≤x<100 18 【分析】(1)本次调查一共随机抽取学生:18÷36%=50(人);
(2)a=50﹣18﹣14﹣10=8;
(3)本次调查一共随机抽取50名学生,中位数落在C组;
(4)该校九年级竞赛成绩达到80分以上(含80分)的学生有500×=320(人). 【解答】解:(1)本次调查一共随机抽取学生:18÷36%=50(人), 故答案为50;
(2)a=50﹣18﹣14﹣10=8, 故答案为8;
(3)本次调查一共随机抽取50名学生,中位数落在C组, 故答案为C;
(4)该校九年级竞赛成绩达到80分以上(含80分)的学生有500×=320(人), 故答案为320. 【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;
扇形统计图直接反映部分占总体的百分比大小. 6.(2019•山东临沂•7分)争创全国文明城市,从我做起,某学校在七年级开设了文明礼仪校本课程,为了解学生的学习情况,学校随机抽取30名学生进行测试,成绩如下(单位:分) 78 83 86 86 90 94 97 92 89 86 84 81 81 84 86 88 92 89 86 83 81 81 85 86 89 93 93 89 85 93 整理上面的数据得到频数分布表和频数分布直方图:
成绩(分) 频数 78≤x<82 5 82≤x<86 a 86≤x<90 11 90≤x<94 b 94≤x<98 2 回答下列问题:
(1)以上30个数据中,中位数是 86 ;
频数分布表中a= 6 ;
b= 6 ;
(2)补全频数分布直方图;
(3)若成绩不低于86分为优秀,估计该校七年级300名学生中,达到优秀等级的人数. 【分析】(1)将各数按照从小到大顺序排列,找出中位数,根据统计图与表格确定出a与b的值即可;
(2)补全直方图即可;
(3)求出样本中游戏学生的百分比,乘以300即可得到结果. 【解答】解:(1)根据题意排列得:78,81,81,81,81,83,83,84,84,85,85,86,86,86,86,86,86,88,89,89,89,89,90,92,92,93,93,93,94,97,可得中位数为86,频数分布表中a=6,b=6;
故答案为:86;
6;
6;
(2)补全频数直方图,如图所示:
(3)根据题意得:300×=190, 则该校七年级300名学生中,达到优秀等级的人数为190人. 【点评】此题考查了频数分布直方图,用样本估计总体,以及中位数,弄清题意是解本题的关键. 7.(2019•山东青岛•6分)为了解学生每天的睡眠情况,某初中学校从全校800名学生中随机抽取了40名学生,调查了他们平均每天的睡眠时间(单位:h),统计结果如下:
9,8,10.5,7,9,8,10,9.5,8,9,9.5,7.5,9.5,9,8.5,7.5,10,9.5,8,9,7,9.5,8.5,9,7,9,9,7.5,8.5,8.5,9,8,7.5,9.5,10,9.5,8.5,9,8,9. 在对这些数据整理后,绘制了如下的统计图表:
睡眠时间分组统计表睡眠时间分布情况 组别 睡眠时间分组 人数(频数) 1 7≤t<8 m 2 8≤t<9 11 3 9≤t<10 n 4 10≤t<11 4 请根据以上信息,解答下列问题:
(1)m= 7 ,n= 1 ,a= 17.5% ,b= 45% ;
(2)抽取的这40名学生平均每天睡眠时间的中位数落在 3 组(填组别);
(3)如果按照学校要求,学生平均每天的睡眠时间应不少于9h,请估计该校学生中睡眠时间符合要求的人数. 【分析】(1)根据40名学生平均每天的睡眠时间即可得出结果;
(2)由中位数的定义即可得出结论;
(3)由学校总人数×该校学生中睡眠时间符合要求的人数所占的比例,即可得出结果. 【解答】解:(1)7≤t<8时,频数为m=7;
9≤t<10时,频数为n=18;
∴a=×100%=17.5%;
b=×100%=45%;
故答案为:7,18,17.5%,45%;
(2)由统计表可知,抽取的这40名学生平均每天睡眠时间的中位数为第20个和第21个数据的平均数, ∴落在第3组;
故答案为:3;
(3)该校学生中睡眠时间符合要求的人数为800×=440(人);
答:估计该校学生中睡眠时间符合要求的人数为440人. 【点评】本题考查了统计图的有关知识,解题的关键是仔细地审题,从图中找到进一步解题的信息. 8. (2019湖北仙桃)(7分)为了解某地七年级学生身高情况,随机抽取部分学生,测得他们的身高(单位:cm),并绘制了如下两幅不完整的统计图,请结合图中提供的信息,解答下列问题. (1)填空:样本容量为 100 ,a= 30 ;
(2)把频数分布直方图补充完整;
(3)若从该地随机抽取1名学生,估计这名学生身高低于160cm的概率. 【分析】(1)用A组的频数除以它所占的百分比得到样本容量,然后计算B组所占的百分比得到a的值;
(2)利用B组的频数为30补全频数分布直方图;
(3)计算出样本中身高低于160cm的频率,然后利用样本估计总体和利用频率估计概率求解. 【解答】解:(1)15÷=100, 所以样本容量为100;
B组的人数为100﹣15﹣35﹣15﹣5=30, 所以a%=×100%=30%,则a=30;
故答案为100,30;
(2)补全频数分布直方图为:
(3)样本中身高低于160cm的人数为15+30=45, 样本中身高低于160cm的频率为=0.45, 所以估计从该地随机抽取1名学生,估计这名学生身高低于160cm的概率为0.45. 【点评】本题考查了利用频率估计概率:用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.也考查了统计中的有关概念. 9. (2019湖北咸宁市)((8分)某校为了解七、八年级学生一分钟跳绳情况,从这两个年级随机抽取50名学生进行测试,并对测试成绩(一分钟跳绳次数)进行整理、描述和分析,下面给出了部分信息:
七、八年级学生一分钟跳绳成绩分析表 年级 平均数 中位数 众数 七 116 a 115 八 119 126 117 七年级学生一分钟跳绳成绩(数据分7组:60≤x<80,80≤x<100,…,180≤x<200)在100≤x<120这一组的是:
100 101 102 103 105 106 108 109 109 110 110 111 112 113 115 115 115 116 117 119 根据以上信息,回答下列问题:
(1)表中a= 118 ;
(2)在这次测试中,七年级甲同学的成绩122次,八年级乙同学的成绩125次,他们的测试成绩,在各自年级所抽取的50名同学中,排名更靠前的是 甲 (填“甲”或“乙”),理由是 甲的成绩122超过中位数118,乙的成绩125低于其中位数126 . (3)该校七年级共有500名学生,估计一分钟跳绳不低于116次的有多少人? 【分析】(1)根据中位数,结合条形统计图及所给数据求解可得;
(2)将甲、乙成绩与对应的中位数对比,从俄日得出答案;
(3)利用样本估计总体思想求解可得. 【解答】解:(1)∵七年级50名学生成绩的中位数是第25.26个数据的平均数,而第25.26个数据分别是117.119, ∴中位数a==118, 故答案为:118;
(2)∴在各自年级所抽取的50名同学中,排名更靠前的是甲, 理由是甲的成绩122超过中位数118,乙的成绩125低于其中位数126, 故答案为:甲,甲的成绩122超过中位数118,乙的成绩125低于其中位数126. (3)估计一分钟跳绳不低于116次的有500×=270(人). 【点评】本题主要考查频数分布直方图、中位数及样本估计总体,解题的关键是根据直方图得出解题所需数据及中位数的定义和意义、样本估计总体思想的运用.