概率论与数理统计方向学术型硕士与统计专业学位硕士概率论基础课程的研究
【关键词】概率论与数理统计 学术型硕士 专业学位硕士
现在国家硕士研究生培养门类中列于数学大类之下属于概率论与数理统计大方向的有概率论与数理统计学术型硕士,应用统计专业学位硕士两类。两类硕士生的来源均是四年制本科生,学术性硕士生源的一般要求是数学或统计学专业毕业,应用统计专业学位硕士则只要求是理工科及相关专业即可,二者差别较大,专业知识的起点高度有差距。
在培养目标上,两类硕士差距就更加明显了。学术型硕士要求可以进行基本的专业理论研究,有继续进行高等理论研究的素质和潜力,其中的一部分人可以继续攻读本专业及相关金融、管理、经济等相关专业的博士学位,学术性的硕士生更强调理论学习和理论基础的训练。专业学位硕士则要求较好的专业知识实用能力,了解掌握常用统计方法的思想和软件应用,实践能力强,具有分析解决带复杂数据分析背景的实际问题的潜力,强调的是学生对实际问题的处理能力,各种统计方法的综合运用及实战能力。在国外发达国家,目前均有应用统计专业学位博士,就是说将来在我们国家,优秀的应用统计专业学位硕士可以进一步攻读专业学位博士,这类博士应该对实际问题有敏锐的眼光,对各种实用的统计方法有全面的了解,知晓其长处与不足,可以解决复杂的实际数据分析问题,因此应用统计专业学位硕士的概率理论基础训练应更加倾向于实际,倾向于在统计学中大量用到的概率论知识。这就决定了对两类硕士在概率论基础知识要求方面有很大不同。在概率论基础方面,由于两类生源的本科知识体系中都是以《概率论与数理统计》课程为起点,概率论部分基本相同,内容是:概率基础及公式,随机变量及分布,随机向量及分布,数字特征及计算。在硕士生阶段应在此基础上考虑两类硕士的培养目标的差异,分别在概率基础课程中安排不一样的教学内容和重点。
对学术型硕士生,通常开设《高等概率论》课程,以测度论为起点,具有一定的抽象度和深刻性,讲授一般观点下的积分、可测变换,随机变量及向量,概率理论、基本公式独立性,不等式和极限定理,数字特征与相依关系,讲述高度抽象的测度控制理论、拉冬一尼古丁定理、抽象的条件期望理论,训练学生的思考能力和论证基本功。对应用统计专业学位硕士,开设《概率论基础课程》,不涉及测度论等抽象内容,但是要把在实际应用中所有数据类型所对应的概率密度形式及演算作为重点加以训练,内容应该集中在常见随机变量的回顾,特殊类型的随机变量(既不是离散的也不是连续的)的引入和背景,条件概率演算一特别是连续变量对离散变量、离散变量对连续变量的条件概率计算,复杂情况下随机变量数字特征的计算等等,强调学生的动手推演能力和问题归类能力,例如要求学生会计算贝叶斯理论中常用的二项变量与贝塔变量的联合分布,通过这个联合分布来来计算相应的广义条件概率密度及条件数学期望。另一个例子就是给学生们详细介绍对连续型随机变量进行截断以后得到的截断随机变量的分布推演过程,讲述清楚该类型随机变量所对应的广义密度函数与原来的连续型随机变量的密度函数之间的关系,这类随机变量既不是连续性的也不是离散型的,使二者的结合体,在生物统计、工程试验的数据集合中经常会出现。
实际上,站在较高的专业角度来看,两种内容的知识建构是共同的,差别是一个为用抽象描述来讲授,另一个是通过具体刻画结合例子来讲授。分别按不同侧重点来进行教学可以得到更好的专业训练效果。
本文系大连理工大学研究生教改项目资助。
推荐访问: 概率论 硕士 统计 数理 专业学位