数字图像处理教学改革研究与探索
摘要:通过分析目前数字图像处理课程中存在的课程定位不明确、传统教学模式与授课差异的矛盾和教材与学科发展不一致的问题,从教学内容、教学资源、多元化考核评价标准、开展研究性课堂教学和实践教学等多个方面进行教学改革探索。实践表明,该教学方法克服传统教学方法所存在的弊端,极大地提高了学生的自主学习能力,为培养具有较强适应能力的应用型和创新型人才打下坚实的基础。
关键词:数字图像处理;教学改革;课程建设;研究性教学
作者简介:宁纪锋(1975-),男,陕西韩城人,西北农林科技大学信息工程学院,副教授。(陕西 杨凌 712100)
基金项目:本文系西北农林科技大学教学改革研究项目(项目编号:JY1102077)、西北农林科技大学本科优质课程建设项目的研究成果。
中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2013)34-0122-02
“数字图像处理”是西北农林科技大学(以下简称“我校”)信息工程学院为计算机科学与技术、软件工程、信息与计算科学等多个理工科专业所开设的一门专业必修课。该课程涵盖数学、物理、信号处理、心理学、计算机科学等多个领域的知识,与本科阶段的高等数学、线性代数、概率论、面向对象编程、数据结构、算法分析等多门课程密切相关,对后续的特征提取和图像理解等高级计算机视觉处理课程具有重要的基础作用。同时,它在“模式识别”、“人工智能”和“机器学习”等专业课程体系中起着重要的作用。[1-3]
一、课程改革的必要性
由于图像处理理论性强,内容抽象,算法较多,涉及的理论和方法既包含时域(空域)、变换域(频域为主)、数学形态学、地理学(如分水岭算法),还涉及到模式识别理论的一些知识,学生理解起来有一定难度,在解决实际问题时,面临着无从下手的困难。同时,图像处理技术应用较为广泛,随着数字成像设备的广泛使用和智能手机的普及,社会对图像处理人才的需求也日益增加,这些都对课程教学提出了更高的要求。在教学过程中发现“数字图像处理”的传统教学模式中,在课程定位、教学模式和教学内容上存在一些问题。
1.课程定位不明确
“数字图像处理”在本科教学过程中有着两种比较冲突的定位,导致课程教学过程存在两种倾向。一是不顾本科学生实际情况向研究生课程看齐,将重点放在数字图像处理理论内容。但这些内容与实际应用联系并不紧密,忽视它的应用性和实践性强的特点,从而导致理论与实践脱节,造成学生在编程能力上的欠缺。二是过分强调应用技能,把数字图像处理等同于讲授Photoshop等应用软件的使用,或以讲授MATLAB和Open CV图像处理函数为主,不重视原理和算法,忽略了对本科生科学素质和研究能力的培养。
2.传统教学模式与授课对象差异性的矛盾
“数字图像处理”通常要求先研修“高等数学”、“线性代数”、“概率论与数理统计”和“数字信号处理”等课程,但是一些本科专业并没有完整开设这些课程。例如,我校计算机科学与技术专业学习“数字信号处理”课程,但软件工程和信息与计算科学专业未开设该类课程。此外,在实验环节中,教师根据教学大纲设置的实验内容通常比较固定,而未考虑学生专业和背景知识的差异、统一的实验环境模式,使得有的专业学生因为知识储备不足,学习起来有一定困难;而有的专业学生则感觉学习内容简单、缺乏挑战性,使得教师讲授时在调动学生积极性、提高学生实践能力方面难以协调。
3.教材与学科发展不一致
数字图像处理内容涉及到矩阵运算、信号处理、概率论与数理统计等多个内容交叉学科,与新兴学科的发展密切相关。当前,在人工智能、模式识别和机器学习等新兴学科的推动下,数字图像处理技术发展越来越快。传统的教材或过于偏重推导理论,与应用实践偏离,或成为图像处理软件或函数(如 Photoshop、MATLAB或Open CV)的使用说明书,使得学生难以深入学习图像处理知识,影响对该门课程的掌握。
二、课程改革方法
根据授课专业对象的实际情况,在教学内容、教学方法、完善实验教学和考核等方面对该门课程进行一系列改革,充分利用图像处理实践性强的特点,依托我校在数字图像处理方面长期积累的理论和研究资源,将理论方法与实践应用有机结合,构建了全面系统的数字图像处理教学体系。多年教学效果表明,该教学模式有效克服传统数字图像处理教学存在的局限,极大增强了学生的学习兴趣,提高了学生的动手能力和创新素养。
1.完善课程内容体系,适应图像处理发展
数字图像处理是一门发展中的课程,每年都有许多新的研究理论和方法不断涌现,需对课程不断进行完善,以适应图像处理学科的发展。在保持图像处理课程核心内容的基础上,注重将最近的该学科具有代表性的成果纳入教学。精简和更新一些陈旧的和目前图像处理实际中很少使用的一些方法。其次,将一些现代经典的科研论文,以补充教材的形式,作为教学内容。将一些理论性较强,对数学基础要求较高的内容,如主动轮廓分割模型和目标跟踪方法等作为选学内容,供有兴趣的学生学习。
考虑到OpenCV和MATLAB的广泛使用,图像文件的读写已非常简单,因此,减少对图像文件格式的讲解;在图像分割与边缘检测中,删掉投影法与差影法内容,因为该方面内容在实际中已很少使用;在频域处理中,淡化对傅里叶变换理论和算法的讲解,重点放在其思想和应用上。
2.应用全方位教学手段,构建立体化教学资源
针对“数字图像处理”课程理论性和实践性较强、可视化程度较高的特点,综合利用图像、视频信息、可视化编程软件和网络资源等现代化教育技术,从课堂、实验、应用实践等诸多环节探索立体化教学资源。结合不同专业需求,运用MATLAB、Open CV等软件工具包开发图像处理实验平台,建立网络化辅助教学系统,使抽象概念和算法形象化,激发学生思维。例如,建立图像处理标准测试库,包括了图像去噪、图像分割、图像变换和特征提取与识别等核心内容涉及到的测试数据;在参考教材方面,提供了国内外知名大学出版的数字图像处理和计算机视觉教材及计算机视域的专著;在多媒体课件方面,提供多年从国内外知名大学网站上搜集到多个数字图像处理和计算机视觉的电子课件,供学生学习;在代码方面,提供了数字图像处理方面的经典和最新的一些科研成果的源代码或可执行软件,学生自己运行代码并分析实验结果,加深对图像处理课程的认识。
3.以学生发展为本,建立多元化的考核评价标准
在传统方式下,教师常以期末考试和出勤率来评价学习效果,忽略了对学生参与学习活动和学习过程的评价。大部分学生往往在考试前突击学习,没有真正掌握扎实的知识。因此,本教学改革以过程控制为中心,以能力提高为目标,对考核方式进行改革,实行常规考核与过程性考核相结合的方式,准确把握学生的真实成绩,全面衡量和控制教学质量,既要考学生的基本理论,更要考他们运用知识和方法设计图像处理方案、完成图像处理实际任务的能力。在授课过程中,注重课堂考察环节,加强师生交互,动态掌握学生对授课内容的理解。开展专题讨论课程,让学生大胆提问,锻炼学生创新思维能力,对表现突出的学生增加平时分。
4.开展研究性课堂教学探索
在教学改革中,精选了若干图像处理经典和前沿专题讨论,包括论文、程序源代码和辅助材料。在课程一开始就布置任务给学生课下自学,并安排学生上台讲授,其他学生提问,教师给予点评,并组织学生一起讨论,加深对图像处理课程的认识,培养学生综合运用知识的能力,提高创新素养。
例如,在图像分割专题讨论中,以经典Mean Shift分割为主要内容,Graph Cut和交互式分割两个方向作为补充内容,开展专题讨论。因为这些广泛使用的算法涉及到高等数学、线性代数、概率论、数据结构和算法设计等多门所学课程。通过自学、上课讨论和教师点评,学生对以前所学基础和专业知识有了更深层次的理解。同时,这些算法都面向彩色图像,克服了教材中以灰度图像为主要分割对象的不足。
5.开展研究性实践教学
传统“数字图像处理”课程实践教学强调基本算法的实现,未强调算法之间的逻辑联系,忽略了数字图像处理基本算法的综合训练。在改革中,保留图像处理基本核心算法,将科研项目融入教学实践中,通过设计研究性综合实践项目,注重学生对所学知识的综合理解和提升。例如,“图像去雾”综合训练实践,以如何有效果去除图像中的雾增强图像质量为目标。该任务以2009年国际计算机视觉和模式识别会议(CVPR)的最佳论文《基于暗通道通先验的单幅图像去雾》[4]为主要内容,涉及到图像处理的多个基本算法,同时也包含了物理学和光学的一些知识。通过将新的实践教学手段应用到教学中,突出对学生思维能力、科研能力和创新能力的培养。
三、结论
通过分析数字图像处理目前存在的课程定位模糊、传统的教学模式与授课对象差异性的矛盾和教材内容与学科发展脱节等问题,笔者根据学科专业特点,结合授课教师的科研项目,从完善课程内容体系、构建立体化教学资源、多元化考核评价标准和开展研究性教学探索等五个方面进行开展数字图像处理教学改革。多年教学效果表明,该教学方法克服传统教学方法所存在的弊端,极大地提高了学生的自主学习能力。学生较好地掌握数字图像处理的核心内容,了解当代图像处理的代表性成果和前沿趋势,综合应用能力和创新素养明显增强,为培养具有较强适应能力的应用型和创新型人才打下坚实的基础,适应了新世纪对信息技术人才的培养要求。
参考文献:
[1]何东健.数字图像处理[M].西安:西安电子科技大学出版社,2008.
[2]杜云明,郝兵,刘文科.“数字图像处理”课程任务驱动教学模式的实践[J].中国电力教育,2013,(10):113-114.
[3]郑慧诚.“数字图像处理”课程教学实践与探讨[J].电气电子教学学报,2012,34(3):71-73.
[4]He Kaiming,Sun Jian,Tang Xiaoou.Single Image Haze Removal Using Dark Channel Prior[A].Proceedings of IEEE Conference on Computer Vision and Pattern Recognition[C].Miami,2009:1956-1963.
(责任编辑:王意琴)
推荐访问: 教学改革 图像处理 探索 数字 研究