对反馈放大电路类型判定方法的研究
总结出了一种判定反馈放大电路类型的方法,它是根据电路的结构从较宏观的角度来判定反馈放大电路类型的。我们在教学中使用该方法多年,对反馈放大电路类型的判定简单、准确。
1 反馈放大电路的基本概念
在电子电路中,所谓反馈,就是将放大电路的输出量(电压或电流)的一部分或全部,通过某种电路(称为反馈网络)送回到输入回路,与外部所加输入信号共同形成放大电路的输入信号(电压或电流),以影响输出量(电压或电流)的过程。反馈体现了输出信号对输入信号的反作用[1]。
反馈有正、负之分。正反馈能提高增益,但会使放大电路的工作稳定度、失真度、频率特性等性能变坏;负反馈虽然降低了放大电路的增益,但却使放大电路许多方面的性能得到改善,利用负反馈技术还可以构成各种运算电路。所以在实际放大电路中均引人负反馈,而正反馈主要用在振荡电路中[2]。
反馈还有直流反馈和交流反馈之分,直流负反馈改善放大电路的直流性能,常用以稳定静态工作点;交流负反馈改善放大电路的动态性能。在很多电路中,常常是交、直流反馈兼而有之[1]。
2 反馈放大电路结构模型
为判定反馈放大电路的类型,建立了如图1所示的反馈电路结构模型。
模型说明:反馈放大电路由基本放大电路和反馈网络组成,基本放大电路的两个输入端分别定义为“输入信号的前端”(简称为“前端”)和“输入信号的后端”(简称为“后端”);“前端”与“后端”的电位差就是送到基本放大电路的净输入电压uid;放大电路的输出端分为“输出电压的上端”(简称为“上端”)和“输出电压的下端”(简称为“下端”)[3];图中的小长方形表示反馈桥梁,它是反馈网络的一部分或全部。反馈桥梁也有两个端子,它的右端若与输出电压的“上端”相连接,就构成了电压反馈,若与输出电压的“下端”相连接就构成了电流反馈(注意:形成电流反馈时,下端不能直接接地,应该接一个电阻,否则就无反馈了);图中反馈桥梁的左端与输入回路连接,连接方式有串联和并联两种,如果与输入信号的“后端”相连接,反馈信号则以电压的形式与净输入电压uid相加减,构成串联反馈,若与输入信号的“前端”相连接,反馈信号则以电流的形式与输入电流ii分流(相加减)后,以净输入电流iid送入基本放大电路,就构成了并联反馈。因此反馈的基本类型有四种,即电压串联反馈、电压并联反馈、电流串联反馈和电流并联反馈。
(1) 找反馈桥梁,确定反馈网络。反馈桥梁是直接连接输出和输入的最短路径,它跟输出和输入的其他公共部分一起统称为反馈网络。反馈桥梁可以从输入端开始采取“顺藤摸瓜”的办法向输出端寻找。
(2) 判断反馈的基本形式。反馈桥梁在输出端连接输出电压的“上端”(或“下端”),就形成电压反馈(或电流反馈);反馈桥梁在输入端连接输入信号的“前端”(或“后端”)就为并联反馈(或串联反馈)。
(3) 判定反馈极性。用瞬时极性法判定是正反馈还是负反馈。具体方法是:先假设输入电压信号ui在某一瞬时的极性为正(相对于参考地而言),并用标记,然后顺着信号的传输方向,逐步推出输出信号和反馈信号的瞬时极性(并用或标记),最后判定反馈信号是增强还是削弱了净输入信号,如果是削弱,则为负反馈,如果是增强,则是正反馈。
(4) 判定交、直流反馈。信号取样后经过反馈网络送往输入端只有直流的是直流反馈,只有交流的为交流反馈。交、直流反馈的判断较容易,下面举例说明判断反馈的类型时,交、直流反馈不作讨论。
4 应用举例
在以下的讨论中,为简便起见,对于多级放大电路,只讨论级间反馈。
要求判定图2的反馈类型[2]。此反馈放大电路中基本放大电路的核心元件是集成运放,该电路集成运放的反相端和同相端分别是输入信号的“前端”和“后端”,负载RL的两端分别是输出电压的“上端”和“下端”。根据步骤(1),反馈桥梁是R2所在支路, 反馈网络由R2,R3所在支路构成。由步骤(2),反馈桥梁的一端与输出电压的“下端”相连形成电流反馈,另一端连接输入信号的“前端”与输入信号ii分流形成并联反馈,反馈的基本类型是电流并联反馈;由步骤(3),设ui的瞬时极性为,此刻反馈桥梁的在输入端的极性为,在输出端的极性为,反馈电流if是从信号前端的节点流出,使净输入量iid减小,故为负反馈。因此反馈类型是电流并联负反馈。
反馈网络为Rf和R4所在支路,反馈桥梁Rf所在支路在输出端连接输出电压的“上端”形成电压反馈,在输入端连接输入信号的“前端”,与输入信号分流形成并联反馈,故反馈的基本类型是电压并联反馈;利用瞬时极性法,设输入信号“前端”(即集成运放的同相输入端P点)为,则集成运放的输出为,复合管的射极即输出电压的“上端”D点也为,虽然反馈桥梁的两端P、D都为正,但在输入端P点的电位有一个微小的升高,经过放大之后,在输出端D点的电位则会有一个很大的提升,这样反馈桥梁在输出端的电位就高于输入端的电位,于是反馈电流if就流入节点P,使净输入量iid增大,形成正反馈。总的反馈类型是电压并联正反馈。
此电路图如果断开A,P两点之间的连线,并使A、N相连接,则反馈桥梁仍然是Rf所在支路,反馈网络由Rf及R2所在电路构成。反馈桥梁的一端接输出电压的“上端”,另一端接输入信号的“后端”形成电压串联反馈,再利用瞬时极性法,很容易判断出电路的反馈类型为电压串联负反馈。
反馈桥梁是集成运放A3及其外围元件组成的电路,它与R8,R7,R3,R4等构成反馈网络。反馈桥梁在输出端的连接点D,采样输出电压,取出uo的一部分(R4上的电压),形成电压反馈。注意:若反馈桥梁在输出端不能明显地看出连接的是输出电压的“上端”还是“下端”时,可以令“上端”接地,使输出电压为零,如果反馈信号消失就是电压反馈,否则是电流反馈,此处若使集成运放的输出端接地,则uo为零,D点电压也为零,反馈信号就不存在,故为电压反馈;反馈桥梁在输入端连接点P点即输入信号的“下端”形成串联反馈;设ui的瞬时极性为,从图中可以看出,经过一系列的电位移动及变化,此时送到输入回路的反馈电压uf(R8上的电压)的极性为,使净输入信号uid减少(存在等式ui=uid+uf,当ui有微小的升高,uf就有较大的升高,从而使uid减小),形成负反馈。因此该电路的反馈类型为电压串联负反馈。
明显地看出,反馈桥梁Cf,Rf所在支路在输出端连接的E2点,不是输出电压的“上端”,不是进行电压采样,故不是电压反馈。而采样的不是电压,就是电流,所以此处接的是电流反馈。此处也可以令负载RL短路,使uo为零,发现反馈依然存在,由此判断为电流反馈;反馈桥梁在输入端接信号的“下端”E1点,反馈电流在Re1上转化为电压形式uf与净输入电压uid(注意uid=ube1)相加减,形成串联反馈;设输入信号端的瞬时极性为,经过一系列电位移动及变化,使E1点的反馈极性为,使净输入量uid增大,形成正反馈。所以电路的级间反馈的类型为电流串联正反馈。如果这时满足电路正常工作条件,加上输入信号,用示波器观察输出信号波形,就会出现波形向上(或向下)翻滚而无法读数的现象,再次说明放大电路若接成了正反馈,就会使放大电路的性能变坏。
若要构成负反馈,可以使反馈桥梁的端点改接。例如:保持B点与E2点的连接不变,断开A点与E1点的连线而使A点与B1点相连接,就构成了电流并联负反馈。再如:保持A点与E1点的连接不变,断开B点与E2点的连线使B点与D点相连接,就构成了电压串联负反馈。
参 考 文 献
[1] 徐安静.模拟电子技术[M].北京:清华大学出版社,2008.
[2] 胡宴如.模拟电子技术[M].2版.北京:高等教育出版社,2009.
[3] 邓宽林.反馈电路的判别方法[J].十堰职业技术学院学报,2003,16(2):7879.
[4] 陈大钦.电子技术基础:模拟部分教师手册[M].4版.北京:高等教育出版社,2003.
[5] 童诗白.模拟电子技术基础[M].3版.北京:高等教育出版社,2003.
[6] 康华光.电子技术基础:模拟部分[M].4版.北京:高等教育出版社,2002.
[7] 胡宴如.模拟电子技术学习指导[M].北京:高等教育出版社,2009.
[8] 王小海.电子技术基础实验教程[M].北京:高等教育出版社,2006.
[9] 胡宴如.模拟电子技术基础[M].北京:高等教育出版社,2004.
[10] 马积勋.模拟电子技术重点难点及典型题精解[M].西安:西安交通大学出版社,2008.
作者简介: 卢厚元 男,1962年出生,湖北武汉人,副教授。主要研究方向为电子技术的应用及教学。
2012年5月1日第35卷第9期
结 语
反馈类型的判定是分析和设计反馈放大电路的前提,在判定反馈放大电路的类型时,如果结合建立的反馈放大电路的结构模型,明确基本放大电路,找准反馈网络和反馈桥梁,按步骤正确运用判断方法,就能正确地判断反馈类型。尽管关于反馈放大电路类型的判断方法早就有人做过具有成果性的研究,而本文描述的判定反馈放大电路类型的方法着眼于电路的宏观结构,使用更直观,判定更简捷、准确,提高了电路分析和设计的效率。
推荐访问: 判定 电路 放大 反馈 类型