“航天器控制理论与方法”专业方向培养方案和教学团队建设的实践与思考

2022-03-21 10:00:09 | 浏览次数:

摘要:“航天器控制”是我校“探测制导与控制技术”专业的重要培养方向。该方向具有理学与工学的双重属性。在该方向的教学中,加入近现代应用数学和近代分析力学的课程,夯实学生的数理力学功底,能够增加学生在专业领域的发展前景和创新能力;同时强化学生工程实验能力的培养,使之树立工程的思想观念,掌握解决工程问题的基本方法。这对于实现理工融合的教育理念,培养我国未来创新型航天科技人才意义重大。师资队伍建设是专业建设、人才培养的生命线,必须持续努力改善师资队伍知识和能力结构,保障教学改革的贯彻落实和顺利进行。

关键词:航天器控制;数理力学;工程实验;人才培养;师资队伍建设

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2015)40-0143-04

一、绪论

“航天器控制理论与方法”是我校“探测制导与控制技术”本科专业的一个重要培养方向。该专业方向经过近十年的建设和发展,在人才培养和科学研究两个方面取得了长足的进步。我校大批毕业生进入航天科研院所工作,不少人已成为业务骨干,为我国航天事业进步和发展做出了应有的贡献。

当前,我国航天科技重大工程诸如载人航天、月球探测、北斗导航等均取得阶段性重大成果,正在酝酿和制定下一阶段主要发展目标和发展路线,我国航天事业处在承上启下的关键时期。在科教体制方面,国家正在酝酿新一轮改革,以期进一步祛除发展中的体制性弊病和痼疾,促进科教兴国大业顺利发展。在社会对科技人才的需求方面,随着我国社会主义市场经济的逐步完善和开放度的提高,对人才的知识能力结构的要求愈来愈呈现出多元化特点,过去那种靠掌握单一专业技能、在一个工作单位或岗位干一辈子的现象很难再出现了。包括人才在内的各种社会资源在社会化生产中的重新配置和流动将愈益频繁,也要求我们培养出的学生必须具备更厚的基础、更广的知识和技能、更强的适应性和开创性。

为了主动适应我国航天科技事业以及社会主义市场经济对未来高科技、高素质人才的需求,作为重点大学航天主干专业的教师,我们必须进一步思考如何建设一支高水平的航天主干专业师资队伍,如何进一步改革和改进教学内容和模式,如何更好地培养出我国未来航天科技事业的合格接班人,为早日圆中华名族强国梦做出我们这一代教育工作者的贡献。

本文将从“航天器控制理论与方法”专业方向培养目标、教学内容、师资队伍建设等方面阐述笔者近年来的实践与思考,以期引起国内同仁的关注和讨论,促进共同提高和进步。

二、“航天器控制理论与方法”专业方向培养目标的探讨

顾名思义,“航天器控制理论与方法”专业方向的学科特质是航天器动力学与控制理论的交叉融合。即以各类航天器为对象,运用控制理论的观点和方法,设计控制律,并分析其闭环或开环(取决于控制律)动态特性,用以指导工程设计和应用。具体到我们这样一所在业内享有盛誉的重点大学,该专业方向的培养目标该如何定位,才能既符合国家和社会对人才的需求,又能体现我们的特色和优势,这是我们院系领导和一线教师长期探索的一个重要课题。下面将从该专业方向在我校的发展历史、存在的问题和解决的思路等方面阐述。

(一)原来的定位——发展历史

我校是一所老牌航空航天高等院校,探测制导与控制技术专业在我校有着悠久的办学历史(尽管早先的专业名称未必这样),但传统优势方向是航空器和航空武器的探测制导与控制技术。在航天器控制方向,尽管也积累了较好的基础,但是教学和科研力量比较分散,没有以院系建制形式集中统一在一起。2006年航天控制系成立,同年“探测制导与控制技术”(航天控制方向)开始招生,标志着“航天器控制”作为我校“探测制导与控制技术”的一个重要专业方向以院系建制的形式被正式确立,也为我校“三航”(航空、航天、民航)特色办学提供了重要的支撑。在培养目标的定位过程中,我们曾充分调研了国内兄弟院校,特别是传统航空航天类重点院校的培养方案,初步确定将航天器轨道动力学与控制作为我们的重点培育和发展方向,这主要基于以下几点考虑:①深空探测是我国乃至世界未来航天技术发展的一个重要方向,其中轨道动力学的分析和计算起着关键作用;②国内传统航空航天类重点院校在轨道动力学方向比起我校没有明显优势,我们选择此方向作为重点建设方向完全可能迎头赶上;③南京大学的天体力学(含天体轨道力学)在国内首屈一指,我校与南大毗邻,因此在人才培养和交流、科研合作等方面具备独特的地域优势,可以藉此推动我校在航天器轨道力学方面的快速发展;④我校在飞行器控制理论与技术方面具备传统优势,将这方面的积累(成果和师资)转移应用到航天器控制领域,有望实现航天器控制专业方向的跨越式发展。

由于专业培养目标定位合理明确,师资培养和引进工作顺利,一线教师甘于奉献、勤奋工作,我校探测制导与控制技术专业之“航天器控制”方向在短短几年之内就在人才培养和科学研究方面取得了累累硕果。我们不仅培养了一大批优秀的本科生,而且选拔了一批优秀的学生继续在航天器“导航、制导与控制”学科深造,攻读硕士和博士学位。现在已有不少毕业生成为我国航天科研院所的专业技术骨干。这表明我们“航天器控制理论与方法”专业方向的办学实践是成功的。

(二)显露出来的问题

尽管我校在“航天器控制理论与方法”专业方向上的办学取得了较大的成绩,但是在多年的教学实践过程中,我们也逐渐发现了一些不足和缺陷。特别是在国家科技、教育、经济、就业等形式发生重大变化的今天,这些不足和缺陷更应该引起我们足够的重视,积极思考,认真应对,进一步改进工作,更好地适应国家和社会对人才培养的需要。下面逐一剖析我校探测制导与控制技术专业之“航天器控制理论与方法”方向在培养目标定位中显露出的问题。

1.培养目标单一化,缺乏细化分类。我们在确立“航天器控制理论与方法”这一培养方向之初,就将“熟练掌握近地航天器轨道计算、分析和设计的基本理论、方法和技能,熟练掌握航天器轨道和姿态控制的基本理论、方法和技能”作为我系探测制导与控制技术专业本科的培养目标。在肯定其科学合理性的同时,应该看到其局限性所在。航天器控制无论是作为专业方向,还是科技产业门类,其所包含的内容是丰富的,近地航天器轨道动力学与控制只是其中之一(尽管是非常重要的)。我们在要求该专业方向学生熟练掌握近地航天器轨道计算和控制基本理论、方法和技能的同时,还应掌握航天器控制其他重要领域的基本知识和技能,比如再入大气航天器的轨道(弹道)力学和控制方法、航天器交会对接的相对动力学与控制等。过于单一和狭窄的专业培养目标,一方面容易导致学生知识和能力结构欠缺,影响到其发展后劲,另一方面直接导致学生择业时选择余地不足,影响其就业。

2.理工融合不够,培养目标在体现厚基础宽口径方面有待进一步优化。诚如上述,我们的“航天器控制理论与方法”专业方向的建设重点是航天器轨道动力学与控制。而航天器轨道动力学与控制是典型的同时具有理学和工学特色的专业方向。它的理学特色体现于“轨道力学”,最早可以上溯到18世纪以来拉普拉斯、庞加莱这些数学、力学家在天体轨道计算方面的开创性工作。因此,要想真正掌握航天器轨道力学,哪怕只是近地椭圆轨道力学,也须具备非常扎实的数理力学功底。它的工学特色又体现在“控制理论和方法”方面。航天器的控制不仅是个理论问题,更是一个需要综合考虑诸多工程实际限制因素的工程技术问题。通过该专业方向的培养,我们的重要目标是让学生牢固树立工程的思想和观念,有能力设计有实际应用价值的控制规律和技术方案。但是反观我们现有的培养目标,在“理”和“工”两方面都欠火候,在“理工融合”方面就更是有问题了,具体表现在:①在“理”方面,我们没有要求学生熟练掌握近代分析力学、近现代应用数学的基本知识和方法,学生的理论力学课程也是按照非力学专业的规格和学时去教学的,直接导致数理力学功底偏薄弱,发展后劲受限。②在“工”方面,航天器控制领域的必要的实验设计、实验操作和实验数据处理技能方面没有纳入培养目标。一方面导致学生动手实践能力差,更重要的是难以树立工程的思想和观点,以及解决工程问题的思维方法和套路训练。③至于“理工融合”,就更是一个有挑战性的课题。粗浅地讲,“理工融合”的培养目标就是要培养“工程师中的科学家”和“科学家中的工程师”,这实际上也是我国老一辈科学大师,如钱学森、钱伟长等哥廷根学派传承人极力倡导的高等工科教育的理念,可惜直到现在,我国的重点工科大学还没能普遍地实现这样的目标。

(三)解决的思路——培养目标重定位和优化

1.培养目标细化分类,实现个性化培养。诚如前述,“航天器控制理论与方法”本身所包含的内容是广泛的,我们在强调重点方向(航天器轨道动力学与控制)的同时,决不能忽略其他方向,以适应我国航天科技工业部门对人才的广泛需求。为此,我们考虑在新一轮培养方案的改革和调整中,将培养目标细化分类。除了“航天器控制理论与方法”方面的共同专业课程在一起教学外,在大三下学期或大四上学期就要根据不同的亚类分班教学。对于个别学术科研苗子,要早发现、早培育,“单独开小灶”,加大课程深度,及早进行科研方法的训练。如果符合推免研究生条件,则要吸收进相关老师的科研团队。

2.在培养目标中凸显对数理力学基本功底的要求。无论是近地航天器轨道动力学,还是再入航天器弹道学,要想真正学懂学透,融会贯通,举一反三,非具备扎实的数理力学功底不可。否则,我们培养出来的学生,学近地轨道的设计不了深空探测轨道,学卫星控制的搞不了飞船再入控制,学再入弹道的不会计算绕地椭圆轨道。这样的学生发展后劲不足,工作适应性差,更不能期待做出创新性的成果来。因此,我们在探测制导与控制技术之“航天器控制理论与方法”的培养方案中,必须强调“培养学生具备扎实的数理力学功底”。

3.培养目标中应强调对实验技能和工程实践能力的要求。我校是一所工科院校,探测制导与控制技术(航天器控制方向)是工科专业,这样的本质属性要求我们须臾不能忘记本专业的培养目标中必须包含对实验技能的要求。而且这种实验技能不仅仅是普通的实验技能,比如《大学物理》、《模拟电路》、《数子电路》、《自动控制原理》、《微机原理》等课程中所要求的基本技能,而是要求学生具备一定的工程实验技能,即是为解决一个比较综合的工程问题,进行实验方案设计、实验操作、事后的实验数据分析和处理能力。只有具备这样的实验能力,才算达到了我校“航天器控制理论与方法”专业方向本科毕业生的要求。

三、教学内容和教学模式改革探讨

教学内容和教学模式是为培养目标服务的,有什么样的培养目标就应该制定什么样的教学内容,实行什么样的教学模式。围绕以上培养目标的调整,本专业方向的教学内容和模式也宜作以下调整或改革。

(一)大幅度增加近现代应用数学和近代分析力学的课程

现在我校探测制导与控制技术(航天控制方向)专业教学计划中所涉及的数学课程,除了包括全校公共基础课的《高等数学》、《线性代数》、《概率论与数理统计》外,仅有《复变函数与积分变换》、《数值计算方法》两门课,而且课时都较小。《理论力学》是按非力学类专业的培养规格教学的,内容只涉及古老的牛顿矢量力学部分,缺乏作为近代力学基础的拉格朗日分析力学。而且随着一轮又一轮的所谓教学改革,为学生“减负”,以上课程的课时被一缩再缩,学生的数理力学基本功训练得不到必要保证,一线教师普遍感觉到学生的基础越来越薄弱,前景堪忧。为了改变这种状况,培养基本功底扎实的航天控制类精英人才,我们拟在修订培养方案和教学计划中,大幅度增加近现代应用数学和近代分析力学的课程,初步计划增加如下课程:《数学物理方法》、《张量初步》、《摄动方法》、《量纲分析》、《分析力学》。这些课程所能提供给学生的不仅仅是知识,更重要的是思考和解决广泛的数学、物理和工程问题的方法和技能,作为“航天器控制理论与方法”专业方向的学生,当然应该熟练掌握之。下面仅就《张量初步》、《摄动方法》、《量纲分析》等课程的必要性做简要说明。张量理论是数学的一个分支,其概念源自力学,最早用来表示弹性介质中各点的应力状态,后来人们发现许多物理量均具有张量的属性——对坐标变换的不变性。现在工科学生熟知的矢量和标量都是张量的特例,分别是一阶张量和零阶张量,它们均具有对坐标变换的不变性。但是世界上的物理量仅用标量和矢量来描述是不够的,比如航天器的转动惯量,既非矢量也非标量,而是一个二阶张量。如果我们用张量的概念来描述航天器的转动惯量,就比通常大部分教科书所用的转动惯量矩阵更能反映其本质。因为惯量矩阵对坐标变换是变化的,而张量是不变的,不变的量恰恰是事物的本质属性。下面再说《摄动方法》。摄动方法是近似求解非线性代数方程、常微分方程、偏微分方程的强有力工具。该方法诞生于数子电子计算机还没有问世的近代,最早被科学家用来计算天体轨道。1946年数字电子计算机问世后,数值求解成为人们最热衷的方法,但是数值解很难给出带有规律性的结果。摄动法可以通过引入小参数摄动,给出复杂问题的近似解析解,不仅求解方便,而且能够发现解的结构中一些规律性的东西,更利于我们认识事物的本质。所以《摄动方法》是一门具有方法论性质的重要课程。最后讲《量纲分析》。量纲分析是一门十分重要但几乎被我国高等工科学校严重忽视的课程。上世纪我国一大批数理力学家均能十分熟练地运用量纲分析的方法来对系统建模、实验数据进行分析。但是不知何故,现在这门课在高等工科学校的教学计划中几乎绝迹。据传,牛顿最早就是用量纲分析的方法从开普勒第三定律导出万有引力定律的!我们呼吁高等工科学校尽快给《量纲分析》以应有地位。

(二)加大综合实验课的比重,提高学生工程实验技能

我校探测制导与控制技术(航天控制方向)专业的教学计划中,课程实验的课时不少,但是综合实验课的课时严重不足,而综合实验课是培养学生工程实验技能,使其确立工程观念和思想,培养其用实验或试验的手段解决工程问题的最重要的机会。造成此种局面的原因是复杂的,既涉及到师资队伍本身的知识和能力结构,也涉及到当前高校内部考核评价机制不够健全,影响广大教师从事实验教学的积极性等。因此,要根本解决此问题,必须从学校内部管理和评价机制等深层次入手,大刀阔斧改革,进一步健全实践教学评价机制,鼓励一部分优秀教师能专心从事综合实验课的教学工作。

(三)对学生实行“精英化”和“大众化”分离的分类教学模式

探测制导与控制技术(航天控制方向)专业的毕业生未必全部到航天科技工业部门就业,更未必全部从事该领域的学术科研工作。相当数量的毕业生会进入国民经济建设的其他各业,比如工业自动化、机电设计、企业管理等。对于那部分有志于从事航天科技,尤其是在学术科研方面有发展潜力的学生,我们在教学计划中应加大必修课的比重,降低选修课的比重,因为必修课是为今后从事学术科研打基础的非常重要的课程。对于其他学生,则可适度减小必修课的比重,根据其个人兴趣和未来择业方向,给其以自由选课的机会,只要修满规定学分,就是合格的毕业生。当然可以预见,这种改革方案在操作层面上将会遇到不少困难,比如怎么分类、何时分类、分类后能否再调整等问题。改革得好,大家满意;改革得不好,影响稳定。因此,需要我们上下一心,积极探索,谨慎实施。

四、师资队伍建设中的问题与解决思路

师资队伍建设始终是专业建设中的核心关键。上述培养目标、教学内容和教学模式改革无一不牵扯到师资队伍本身的建设。因为教学内容要靠教师传授给学生,教学活动要靠教师来实施,教学改革也要靠教师来贯彻落实,师资队伍的水平决定了教学效果的“最大理论值”和培养目标的实现程度。欲实施前述教学内容的改革,我们感觉到当前在师资队伍方面最突出的问题如下。

(一)任课教师学科专业结构过于单一

我校探测制导与控制技术(航天控制方向)的一线任课教师基本均毕业于“导航、制导与控制”或“飞行器设计”二级学科,学科专业结构过于单一,难以完全适应“航天器控制理论与方法”专业方向厚基础宽口径人才培养的需要。前文提到,要在教学内容中大幅度增加近现代应用数学和近代分析力学的课程,比如《数学物理方法》、《张量初步》、《摄动方法》、《量纲分析》、《分析力学》等,对于这些课程我们就缺乏专业的授课教师。虽然部分课程比如《数学物理方法》在我校其他专业(比如流体力学或电磁场专业)有授,可以让我专业学生全部去他院修课,但是毕竟不同专业对该课的要求和课时均不同,在课程教学管理和课程考试协调上会遇到很大障碍。还有一些课程,即便在其他专业也未必有授,比如《摄动方法》和《量纲分析》等。

(二)一线任课教师中具备较强工程实验技能和教学经验的教师匮乏

近十年来,我们专业新引进的教师全部是国内重点名牌大学毕业的博士,整体上理论学术水平较高,科研创新能力也较强,但是工程实验技能相对薄弱。造成此种现象的原因是多方面的,比如各学校对博士生学术考核的要求偏重于理论水平,而工程实践能力受到一定淡化。这就造成了我们的一线教师中具备较强工程实验技能的比较匮乏。

解决以上问题的初步考虑如下。

1.在现有师资中发掘并动员一些数理力学功底厚实的教师,鼓励其早日为本科生开出上述近现代应用数学和分析力学的课程来,并在教学工作量计算、职称评聘等方面给予倾斜或适当照顾,以激励其为打牢学生基本功多多出力。

2.在新引进师资中,我们不必局限于接收“导航、制导与控制”、“飞行器设计”等学科专业的博士毕业生。对于“应用数学”、“力学”等学科专业的优秀博士毕业生,只要热爱航天及国防教育事业、有志于转型从事航天器动力学与控制方面的应用数学问题或力学问题研究,我们应该张开双臂欢迎。引进这些师资后就不愁我们专业的本科生数理力学功底打不扎实了。

3.尽快引进高水平的实验技师,为我专业的学生开设高水平的综合实验课。在引进师资的学历中,也应该解放思想,实事求是,不能一刀切地“非博士不要”。古人早就说过“不拘一格降人才”,我们现在难道不应该比古人更开明、更有胸怀和眼界吗?

五、结论与展望

世界新一波科技革命浪潮已经掀起,祖国航天事业和科教兴国伟大战略已经向我们吹响了冲锋的号角,国家和社会对新一代高素质、复合型科技人才的需求比历史上任何时期都迫切。作为重点工科大学的一线教育工作者,我们责任重大,必须深刻认识到:越是在科技日新月异的今天,越是要夯实学生的基础;越是在知识翻新快的时候,越是要加强师资队伍自身的建设。只要我们着眼于夯实学生数理力学基本功和工程实践能力基本功,抓住师资队伍建设这条主线,就抓住了问题的要害,相信我们专业方向的人才培养工作会更上一层楼,为祖国航天事业、科教兴国和国民经济建设输送更好、更多的合格人才。

参考文献:

[1]韩艳铧,徐波.正确处理教学科研关系,做一名合格的高校教师[J].中国科教创新导刊,2008,(32):49-50.

[2]韩艳铧,徐波,陆宇平.重视和改善基础教学工作,培养创新型科研人才[J].南京航空航天大学学报(社会科学版),2008,10(4):83-87.

[3]刘燕斌.航天控制专业精英化教育的研究[J].教育教学论坛,2014,(46):203-204.

[4]闵祥伟,刘春惠.“理工融合”教育模式的方法论基础浅析[J].北京邮电大学学报(社会科学版),2003,5(4):50-53,62.

[5]胡纵宇,刘芫健.溯本求源:大学生工程实践能力培养的三个回归[J].高等工程教育研究,2015,(1):185-190.

推荐访问: 航天器 团队建设 培养 方向 实践