带电粒子在匀强电磁场中的运动轨迹
大学物理教材中,对带电粒子在电磁场中运动状态的分析,都是针对一些特殊情况进行的,并没有就带电粒子在电磁场中运动的更一般情况进行全面的分析,本文从带电粒子在恒定匀强电磁场中所受到的力出发,用微积分的方法系统地研究其运动的状态,并导出其运动轨迹方程———螺旋线。
一、带电粒子在匀强正交电磁场中运动方程分析
和一般情况相同,设带电粒子所处电磁场的电场和磁场是相互垂直的。
设粒子在电磁场的作用下,t时刻运动至空间中的 p(x,y,z)点,且粒子在该点所具有的速度为:
在此过程中在x轴方向所受到的合外力为: ,则根据动量定理有:
根据如上的参数方程,很显然,带电粒子在互相垂直的匀强电场和匀强磁场中的运动轨迹为螺旋线,轨迹方程为:
二、下面讨论几种特殊情况
根据以上分析得到的结果,在一般情况下,带电粒子在均匀电磁场中的运动可以看成是3个运动的合运动。 其中在z 轴上是一个匀速直线运动;在xy平面上是一个匀速圆周运动和一个沿x轴的匀速直线运动。图2中螺旋曲线是一般情况下带电粒子的运动轨迹。
在一些特殊条件下,带电粒子可能只参与以上3个运动中的一到两个运动,下面我们将分几种不同的情况进行讨论。
如果空间电场和磁场的方向互相平行( = 0),且带电粒子的x y 平面上的分速度不为零,则粒子的运动可以看成是两个运动的合成,即在z 轴方向的匀加速直线运动和在x y 平面上的匀速圆周运动。 其运动轨迹如图3所示。
1、如果空间电场和磁场的方向互相平行( =0),且带电粒子在x y 平面上的分速度为零,则粒子只有一个运动, 即沿z 轴方向的匀加速直线运动。
2、如果空间电场和磁场的方向互相垂直( =0),且带电粒子在z轴上的分速度为零,则粒子的运动可以看成是两个运动的合成,即在x轴方向的匀速直线运动和在xy 平面上的匀圆周运动。
3、如果空间电场和磁场的方向互相垂直( =0),带电粒子在y轴和z轴上的分速度为零,且在x轴上的分速度为 。则粒子只有一个运动,即沿x 轴方向的匀速直线动。
运动的带电粒子在匀强电磁场中要同时受到电场力和磁场力的作用。
由牛顿第二定律得到其运动基本方程:
通过解微分方程,可求出x,y,z,分析其运动轨迹,这样会解出一般方程(螺旋线)和特殊方程(匀速直线或匀速圆周运动等)。
参考文献:
[1] 贾起民;郑永令;陈暨耀.电磁学.高等教育出版社.
[3] 梁灿彬.电磁学.高等教育出版社.
[4] 邓明成.新编大学物理学.科学出版社.
推荐访问: 带电 粒子 场中 电磁 轨迹